Enhancing Multi-Class Classification of Random Forest using Random Vector Functional Neural Network and Oblique Decision Surfaces
نویسندگان
چکیده
Both neural networks and decision trees are popular machine learning methods and are widely used to solve problems from diverse domains. These two classifiers are commonly used base classifiers in an ensemble framework. In this paper, we first present a new variant of oblique decision tree based on a linear classifier, then construct an ensemble classifier based on the fusion of a fast neural network, random vector functional link network and oblique decision trees. Random Vector Functional Link Network has an elegant closed form solution with extremely short training time. The neural network partitions each training bag (obtained using bagging) at the root level into C subsets where C is the number of classes in the dataset and subsequently, C oblique decision trees are trained on such partitions. The proposed method provides a rich insight into the data by grouping the confusing or hard to classify samples for each class and thus, provides an opportunity to employ fine-grained classification rule over the data. The performance of the ensemble classifier is evaluated on several multi-class datasets where it demonstrates a superior performance compared to other stateof-the-art classifiers.
منابع مشابه
Predicting the cause of kidney stones in patients using random forest, support vector machine and neural network
Background: Today, with the advancement of technology in various fields, the importance of recording data in the field of health is increasing so much that for many diseases around the world, including kidney disease, registration systems have been set up. This is happening in our country and in the future, the number of these systems will increase. The medical data set contains valuable inform...
متن کاملMultispectral Image Analysis Using Random Forest
Classical methods for classification of pixels in multispectral images include supervised classifiers such as the maximum-likelihood classifier, neural network classifiers, fuzzy neural networks, support vector machines, and decision trees. Recently, there has been an increase of interest in ensemble learning – a method that generates many classifiers and aggregates their results. Breiman propo...
متن کاملSemi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk
This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...
متن کاملCO2 Forest: Improved Random Forest by Continuous Optimization of Oblique Splits
We propose a novel algorithm for optimizing multivariate linear threshold functions as split functions of decision trees to create improved Random Forest classifiers. Standard tree induction methods resort to sampling and exhaustive search to find good univariate split functions. In contrast, our method computes a linear combination of the features at each node, and optimizes the parameters of ...
متن کاملRandom Forest Algorithm for Land Cover Classification
Since the launch of the first land observation satellite Landsat-1 in 1972, many machine learning algorithms have been used to classify pixels in Thematic Mapper (TM) imagery. Classification methods range from parametric supervised classification algorithms such as maximum likelihood, unsupervised algorithms such as ISODAT and k-means clustering to machine learning algorithms such as artificial...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1802.01240 شماره
صفحات -
تاریخ انتشار 2018